项目类型

项目类别

最新

热搜企业:

to-fu Python
Fork 0 关注 3

Toolbox for Few-Shot Learning

原始仓库地址:https://toscode.gitee.com/pkumlg/to-fu.git

浏览量:129 下载量:0 项目类别: 计算机视觉
3 months前更新
open-exchange Python
Fork 0 关注 1

open-exchange is a model conversion and visualization tool to help users inter-operate among different deep learning frameworks. Convert models between PyTorch and Tensorflow.

原始仓库地址:https://github.com/icgy96/open-exchange.git

浏览量:132 下载量:0 项目类别: 深度学习
3 months前更新
duo N/A
Fork 0 关注 0

# Detecting Underwater Objects (DUO) 水下目标检测技术引起了人们的越来越多的关注。然而,这个领域仍然存在着若干挑战。我们通过应对以下挑战,来促进水下目标检测技术的发展。首先,由于目前可用的数据集基本上缺乏测试集的真值标注文件,这导致研究者必须在训练集上划分出测试集来与其他方法进行比较。训练其他方法会增加工作量;不同的研究人员会划分不同的测试集,导致这一领域没有一个统一的基准来比较不同算法的性能。其次,这些已有数据集(URPC系列)也存在其他缺点,如相似图像过多或标签标注不准确。针对以上这些挑战,我们在对所有相关数据集进行收集和重新标注的基础上,引入了一个新的数据集——水下目标检测数据集(Detection Underwater Objects, DUO)和其相应的基准(benchmark)。DUO包含了多种多样的水下图像,并且具有更合理的注释。相应的基准为学术研究和工业应用提供了多种目标检测模型(在mmddetection框架下)在DUO上的效率和准确性等指标对比数据,其中NVIDIA嵌入式平台JETSON AGX XAVIER也被用于评估不同检测模型的实时推理速度,用以模拟机器人的嵌入式环境。 ## 下载 * [BaiduYun](https://pan.baidu.com/s/1Be8zc9UdR_Pdsyotg_vR2Q) Key : 4bfl ## 引用 @ARTICLE{2021arXiv210605681L, author = {{Liu}, Chongwei and {Li}, Haojie and {Wang}, Shuchang and {Zhu}, Ming and {Wang}, Dong and {Fan}, Xin and {Wang}, Zhihui}, title = "{A Dataset And Benchmark Of Underwater Object Detection For Robot Picking}", journal = {arXiv e-prints}, year = 2021, month = jun, eid = {arXiv:2106.05681}, pages = {arXiv:2106.05681}, archivePrefix = {arXiv}, eprint = {2106.05681}, primaryClass = {cs.CV} }

原始仓库地址:https://github.com/chongweiliu/duo.git

浏览量:96 下载量:0 项目类别: 图像
3 months前更新
Fork 0 关注 0

# UDD_OFFICIAL 为促进海洋养殖场水下自动抓取机器人的发展,大连理工大学多媒体实验室(MM_lab)提出了一个水下海洋牧场目标检测数据集UDD。UDD包括3个类别(海参、海胆和扇贝)共2,227张图片。这是第一个在真实海洋牧场中采集到的数据集。我们还提出了一个新的泊松混合生成对抗网络(Poisson GAN)。 利用Poisson GAN我们构造了一个大型包含18,000张图像的增强数据集(AUDD)。此外,为了使检测器更好的适应水下抓取环境,我们还合成了一个预训练数据集(pre-training dataset),包含59万张图像。 ## Download * [BaiduYun](https://pan.baidu.com/s/1byq7wEID-OzLSJ8p5A6Z5g) Key : 2kse ## Citation @article{Wang:2020ug, author = {Wang, Zhihui and Liu, Chongwei and Wang, Shijie and Tang, Tao and Tao, Yulong and Yang, Caifei and Li, Haojie and Liu, Xing and Fan, Xin}, title = {{UDD: An Underwater Open-sea Farm Object Detection Dataset for Underwater Robot Picking}}, journal = {arXiv.org}, year = {2020}, eprint = {2003.01446v1}, eprinttype = {arxiv}, eprintclass = {cs.CV}, month = mar, annote = {10 pages, 9 figures} }

原始仓库地址:https://github.com/chongweiliu/udd_official.git

浏览量:149 下载量:0 项目类别: 图像
4 months前更新

**Data Description** The detection research of sonar images has a wide range of application value in many fields such as industry, environment and military. Sonar image data is often acquired together with water depth detection and bottom detection data, which enables us to observe the shallow structure of the seabed. This data set was launched by Pengcheng Laboratory, which is currently the largest and most extensive acoustic image data set in the industry. Please contact with yangj01@pcl.ac.cn if you have any questions. ** Download** *Baidu Cloud* https://pan.baidu.com/s/1J1m4jrLPeGdDc5sez75z9A password: 05dg *OneDrive* https://1drv.ms/u/s!AlpdPhejQ4FqiDL25YVhjxxT1WeU?e=DcwBRD **Training Set** The training set contains 4000 forward-looking sonar image files in .bmp format and corresponding annotation result files in .xml format. The file organization structure is as follows: ![](/attachments/download/968) The image data in the forward-looking sonar image file represents the acoustic reflection intensity information, and the principle is as follows: ![](/attachments/download/969) The pixel with the coordinate ![](/attachments/download/978) in the image represents the acoustic reflection intensity information at the direction ![](/attachments/download/976) and distance ![](/attachments/download/977) in the polar coordinate system. Among them, ![](/attachments/download/979) and ![](/attachments/download/980) respectively represent the horizontal angle and slant range of the forward looking sonar, ![](/attachments/download/981) and ![](/attachments/download/982) represent the horizontal and vertical size of the image respectively. The annotation result file contains the detection frame parameters (position and size) and target type of the target in the corresponding sonar image. Target types include cube, ball, cylinder, human body, tyre, circle cage, square cage, and Metal bucket and other 8 categories, the label format is as follows: ![](/attachments/download/970) The </sonar> field contains the working parameters of the sonar when the corresponding image is collected, such as the horizontal/vertical angle of the sonar, the range of the sonar slope, and the working frequency of the sonar. **Test Set** Test Set includes A_Board and B_Board, which contains 1000 sonar image in .bmp format and corresponding sonar annotation files in .xml respectively. The sonar parameter information file format is as follows: ![](/attachments/download/971) **Extra Information:** The data was collected using Tritech Gemini 1200i forward looking sonar. This data set is the original echo intensity information of the sonar in the form of a two-dimensional matrix, which is stored as a bmp image format for the convenience of process and can be read as 3-channel image data. The data of the 3 channels are equal, so the data of one channel can be used in actual processing; The original sonar image has not been adjusted for gain and is directly displayed as a nearly black image. It is suggested that the display effect of the data after histogram equalization is better, which helps to establish an intuitive understanding of the sonar image, but whether to add gain to the data should not have much influence on the algorithm design (the histogram equalization algorithm can be moved Discussion area for reference) **Data Example** ![](/attachments/download/972) The picture above is a forward-looking sonar image. The red box is the target marking frame. From left to right, they are square cage, ball, and tyre. ![](/attachments/download/973) The picture above is a forward-looking sonar image. The red box is the target marking frame. From left to right, they are human body, ball, and circle cage. ![](/attachments/download/974) The picture above is a forward-looking sonar image. The red box is the target marking frame. From left to right, they are tyre and metal bucket.

浏览量:444 下载量:0 项目类别: 图像
4 months前更新
xiangshan Scala
Fork 0 关注 0

Open-source high-performance RISC-V processor

原始仓库地址:https://github.com/openxiangshan/xiangshan.git

浏览量:288 下载量:4 项目类别: RISC-V
4 months前更新

针对列车卫星信号接收器的定位算法,建立一个用于追踪算法训练与改进的3D可视化孪生系统。

浏览量:791 下载量:5 项目类别: 精确定位
6 months前更新
OpenI Dolphin Python
Fork 1 关注 1

基于PyTorch的深度学习计算机视觉算法开源开放学习平台

浏览量:61 下载量:4 项目类别: 计算机视觉
6 months前更新

鹏城实验室开源水下声学数据集将分享每次实验实测的侧扫声呐数据集、前视声呐数据集等等,为水下声学领域提供数据支持。

浏览量:664 下载量:24 项目类别: 图像
8 months前更新

侧扫声呐图像标注软件(Open Side-Scan-Sonar Label Tool),简称**OpenSLT**,是一款能够对XTF格式文件直接进行标注的软件。其工作原理是在线解析XTF格式文件并生成图像,在此基础上进行标注,相比于传统标注方法,该软件能够有效的保留侧扫声呐图像的额外信息,如目标所在帧数、所在采样点、斜距信息等等,方便后续基于深度学习的目标检测算法开发。同时,该软件也支持以YOLO标注格式的输出,具备与传统标注软件相同的功能。

浏览量:1205 下载量:10 项目类别: 其他
8 months前更新

ihub@pcl.ac.cn 鹏城实验室人工智能研究中心

版权所有:鹏城实验室    粤ICP备18066427号-6    Powerd by 国防科技大学Trustie