首页
企业/组织
新建镜像项目
新建托管项目
登录
注册
711
/
opec-net
分享
Activities
1
任务
Resources
Repositories
62
Pull Requests
Roadmap
Calendar
Gantt
版本库
查看Git使用指南
如操作版本库需要认证,请使用您的邮箱
62 提交
贡献统计
分支
1
master
ZIP下载
克隆网址
复制
37240099+lingtengqiu@users.noreply.github.com
提交于
about 1 month
前 :Update README.md
.idea
__pycache__
configs
engineer
show_imgs
tools
utils
weights
yolo
README.md
matching.py
opt.py
pPose_nms.py
test.sh
train.sh
导出统计结果:
各用户提交统计信息
# OPEC-Net [Peeking into occluded joints: A novel framework for crowd pose estimation](https://arxiv.org/pdf/2003.10506.pdf)(ECCV2020)  # Dependencies - PyTorch(>=0.4 && <=1.1) - mmcv - OpenCV - visdom - pycocotools This code is tested under Ubuntu 18.04, CUDA 10.1, cuDNN 7.1 environment with two NVIDIA 1080Ti GPUs. Python 3.6.5 version is used for development. # OCPose ## About OCPose We build a new dataset, called Occluded Pose(OCPose), that includes more heavy occlusions to evaluate the MPPE. It contains challenging invisible jointsand complex intertwined human poses. Dataset | Total | IoU>0.3 | IoU>0.5 | IoU>0.75 | Avg IoU :--:|:--:|:--:|:--:|:--:|:--: CrowdPose | 20000 | 8704(44%) | 2909(15%) | 309(2%) | 0.27 COCO2017 | 118287 | 6504(5%) | 1209(1%) | 106(<1%) | 0.06 MPII | 24987 | 0 | 0 | 0 | 0.11 OCHuman | 4473 | 3264(68%) | 3244(68%) | 1082(23%) | 0.46 OCPose | 9000 | 8105(**90%**) | 6843(**76%**) | 2442(**27%**) | **0.47** ## Download [Images](https://drive.google.com/file/d/1oQ1_epocYgvlha4eowt1FS-5f89XU7xw/view?usp=sharing) [Annotations](https://drive.google.com/file/d/1z8xlN56x9aKve4YSEudYJOJOPt4YaC7H/view?usp=sharing) # Quick Start under CrowdPose Datasets ## Download Datasets [COCO2017](https://cocodataset.org) [CrowdPose](https://github.com/Jeff-sjtu/CrowdPose) ## Download processed annotations pls, Download annotations processed by sampling rules according to our paper [train_process_datasets](https://drive.google.com/file/d/1WlZETQuOJWWARos8nnQw9XRamsTRTrrA/view?usp=sharing) [test_process_datasets](https://drive.google.com/file/d/1YQx0z_lVy8O1ithXp_16dtNjqJrJPvgI/view?usp=sharing) ## Pretrain module Here, we employ top-down module([Alphapose+](https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch) based on pytorch) as our initial module. The pretrain checkpoints trained by official codes could be download as following: [SPPE](https://drive.google.com/file/d/1Wcf5CWYGeMsfKn77Pu5wk6GpwEIScY2q/view?usp=sharing) [yolov3](https://drive.google.com/file/d/1IAtLxnOkE5DkTJ5Lsi7kLLU-edAgzaw_/view?usp=sharing) ## Training Instead of using pretrain module in coco2017, we simply provide you quick-start version, where you merely train the OPEC-Net from processed data including both coco and CrowdPose. Before training, the structure of projects like: ``` coco | train2017 | xxxxx.jpg crowdpose | images | xxxxx.jpg project │ │ │ └───test_process_datasets │ download from Download processed annotations │ │ └──────weights │ │-- sppe │ │ sppe weights │ | │ |-- ssd | | | | | └───yolo | yolow eights └───train_process_datasets download from Download processed annotations ``` ## Training script e.g. ``` TRAIN_BATCH_SIZE=14 CONFIG_FILES=./configs/OPEC_GCN_GrowdPose_Test_FC.py bash train.sh ${TRAIN_BATCH_SIZE} ${CONFIG_FILES} ``` after training, the result of CrowdPose is save into checkpoints/name/mAP.txt the format of results like: ``` epoch (without best match) (use best match) ``` ## Test script e.g. ``` CHECKPOINTS_DIRS='path to your checkpoints files' CONFIG_FILES =./configs/OPEC_GCN_GrowdPose_Test_FC.py bash test.sh ${CHECKPOINTS_DIRS} ${CONFIG_FILES} ``` # Results Result on CrowdPose-test: Method | mAP@50:95 | AP50 | AP75 | AP80 | AP90 :--:|:--:|:--:|:--:|:--:|:--: Mask RCNN | 57.2 | 83.5 | 60.3 | - | - Simple Pose | 60.8 | 81.4 | 65.7 | - | - AlphaPose+ | 68.5 | 86.7 |73.2 | 66.9 | 45.9 **OPEC-Net** | **70.6**| **86.8** | **75.6** | **70.1** | **48.8** Result on OCHuman: Method | mAP@50:95 | AP50 | AP75 | AP80 | AP90 :--:|:--:|:--:|:--:|:--:|:--: AlphaPose+ | 27.5 | 40.8 |29.9 | 24.8 | 9.5 **OPEC-Net** | **29.1** | **41.3** | **31.4** | **27.0** | **12.8** Result on OCPose: Method | mAP@50:95 | AP50 | AP75 | AP80 | AP90 :--:|:--:|:--:|:--:|:--:|:--: Simple Pose | 27.1 | 54.3 | 24.2 | 16.8 | 4.7 AlphaPose+ | 30.8 | 58.4 |28.5 | 22.4 | 8.2 **OPEC-Net** | **32.8** | **60.5** | **31.1** | **24.0** | **9.2** # Visualization  # Citation If you find our works useful in your reasearch, please consider citing: ``` @article{qiu2020peeking, title={Peeking into occluded joints: A novel framework for crowd pose estimation}, author={Qiu, Lingteng and Zhang, Xuanye and Li, Yanran and Li, Guanbin and Wu, Xiaojun and Xiong, Zixiang and Han, Xiaoguang and Cui, Shuguang}, journal={arXiv preprint arXiv:2003.10506}, year={2020} } ```
Loading...